Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.948
Filtrar
1.
Fish Shellfish Immunol ; 144: 109293, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38104696

RESUMO

Asian seabass (Lates calcarifer) holds significant economic value in fish farming in the Asia-Pacific region. Vibriosis caused by Vibrio harveyi (Vh) is a severe infectious disease affecting intensive farming of this species, for which prevention strategies by vaccination have been developed. This study investigated an alternative approach to injectable vaccination to prevent vibriosis in Asian seabass juveniles. The strategy begins with an immersion prime vaccination with a heat-inactivated Vh vaccine, followed by two oral booster doses administered at 14- and 28-days post-vaccination (dpv). Expression of five immune genes TNFα, IL1ß, CD4, CD8, and IgM in the head kidney and spleen, along with investigation of anti-Vh antibody response (IgM) in both systemic and mucosal systems, was conducted on a weekly basis. The efficacy of the vaccines was assessed by a laboratory challenge test at 43 dpv. The results showed that the immunized fish displayed higher levels of mRNA transcripts of the immune genes after the immersion prime and the first oral booster dose compared to the control group. The expression levels peaked at 14 and 28 dpv and then declined to baseline at 35 and 42 dpv. Serum specific IgM antibodies were detected as early as 7 dpv (the first time point investigated) and exhibited a steady increase, reaching the first peak at 21 dpv, and a second peak at 35 dpv. Although the antibody levels gradually declined over subsequent weeks, they remained significantly higher than the control group throughout the experiment. A similar antibody response pattern was also observed in the mucosal compartment. The laboratory challenge test demonstrated high protection by injection with 1.65 × 104 CFU/fish, with a relative percent of survival (RPS) of 72.22 ± 7.86 %. In conclusion, our findings highlight the potential of an immersion prime-oral booster vaccination strategy as a promising approach for preventing vibriosis in Asian seabass.


Assuntos
Vacinas Bacterianas , Bass , Doenças dos Peixes , Perciformes , Vibrioses , Animais , Doenças dos Peixes/prevenção & controle , Imersão , Imunidade , Imunoglobulina M , Vacinação/métodos , Vacinação/veterinária , Vacinas de Produtos Inativados , Vibrioses/prevenção & controle , Vibrioses/veterinária , Vacinas Bacterianas/administração & dosagem
2.
Nature ; 609(7927): 582-589, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071157

RESUMO

Increased levels of proteases, such as trypsin, in the distal intestine have been implicated in intestinal pathological conditions1-3. However, the players and mechanisms that underlie protease regulation in the intestinal lumen have remained unclear. Here we show that Paraprevotella strains isolated from the faecal microbiome of healthy human donors are potent trypsin-degrading commensals. Mechanistically, Paraprevotella recruit trypsin to the bacterial surface through type IX secretion system-dependent polysaccharide-anchoring proteins to promote trypsin autolysis. Paraprevotella colonization protects IgA from trypsin degradation and enhances the effectiveness of oral vaccines against Citrobacter rodentium. Moreover, Paraprevotella colonization inhibits lethal infection with murine hepatitis virus-2, a mouse coronavirus that is dependent on trypsin and trypsin-like proteases for entry into host cells4,5. Consistently, carriage of putative genes involved in trypsin degradation in the gut microbiome was associated with reduced severity of diarrhoea in patients with SARS-CoV-2 infection. Thus, trypsin-degrading commensal colonization may contribute to the maintenance of intestinal homeostasis and protection from pathogen infection.


Assuntos
Microbioma Gastrointestinal , Intestino Grosso , Simbiose , Tripsina , Administração Oral , Animais , Sistemas de Secreção Bacterianos , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , COVID-19/complicações , Citrobacter rodentium/imunologia , Diarreia/complicações , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Imunoglobulina A/metabolismo , Intestino Grosso/metabolismo , Intestino Grosso/microbiologia , Camundongos , Vírus da Hepatite Murina/metabolismo , Vírus da Hepatite Murina/patogenicidade , Proteólise , SARS-CoV-2/patogenicidade , Tripsina/metabolismo , Internalização do Vírus
3.
Fish Shellfish Immunol ; 127: 405-411, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35772679

RESUMO

Francisella orientalis infections, known as francisellosis, are one of the most important diseases affecting the production of Nile tilapia, causing high mortality rates in the most susceptible fish stages: fingerlings and juveniles. Antibiotic therapy is the method of choice for treating the disease, as there are no commercially available vaccines. In this study, we developed an inactivated whole-cell vaccine using an isolate of F. orientalis in combination with the aqueous adjuvant Montanide IMS 1312 VG, which was administered to Nile tilapia through immersion. Two immunization trials (1 and 2) were conducted with fish at the fingerling and juvenile stages. For each trial, five different experimental groups were established: a complete vaccine (bacterin in combination with aqueous adjuvant), bacterin, aqueous adjuvant, and positive and negative controls. Thirty days after vaccination, an experimental challenge was performed through intraperitoneal injection of the same F. orientalis isolate. As a result, the vaccinated fingerlings were the only group in which mortality and progression of clinical signs of francisellosis were statistically significantly reduced, although relative percentage of survival (RPS) was low at 50%. In the juvenile group, RPS was higher at 63%, but not statistically significant. Nevertheless, an RPS of only 50% is acceptable for using vaccines in the field. The bacterin and adjuvant treatments alone were not effective, showing an RPS of 37% and 0%, respectively. Post-vaccination mortality was observed in the group exposed only to the adjuvant, which may indicate excessive immune stimulation at this stage. Interestingly, the immune response elicited by the vaccine was unable to eliminate the pathogen from the host; therefore, the surviving animals became carriers. Although the immune response elicited by the vaccine was unable to eliminate the pathogen from the host, this vaccine formulation could be a viable alternative for use in the field and serve as another means of controlling the mortality caused by the pathogen. Our study provides the first report of vaccination, using immersion, against francisellosis at the most susceptible stages of farmed Nile tilapia. Future studies should address the efficiency of immersion vaccines under field conditions.


Assuntos
Vacinas Bacterianas , Ciclídeos , Doenças dos Peixes/prevenção & controle , Francisella/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Animais , Vacinas Bacterianas/administração & dosagem , Francisella/patogenicidade , Infecções por Bactérias Gram-Negativas/prevenção & controle , Imersão , Óleo Mineral , Vacinação/métodos , Vacinação/veterinária
4.
Toxins (Basel) ; 14(2)2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35202162

RESUMO

Clostridium botulinum produces botulinum neurotoxin (BoNT), which is the most toxic known protein and the causative agent of human botulism. BoNTs have similar structures and functions, comprising three functional domains: catalytic domain (L), translocation domain (HN), and receptor-binding domain (Hc). In the present study, BoNT/E was selected as a model toxin to further explore the immunological significance of each domain. The EL-HN fragment (L and HN domains of BoNT/E) retained the enzymatic activity without in vivo neurotoxicity. Extensive investigations showed EL-HN functional fragment had the highest protective efficacy and contained some functional neutralizing epitopes. Further experiments demonstrated the EL-HN provided a superior protective effect compared with the EHc or EHc and EL-HN combination. Thus, the EL-HN played an important role in immune protection against BoNT/E and could provide an excellent platform for the design of botulinum vaccines and neutralizing antibodies. The EL-HN has the potential to replace EHc or toxoid as the optimal immunogen for the botulinum vaccine.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Botulismo/imunologia , Botulismo/prevenção & controle , Clostridium botulinum/imunologia , Neurotoxinas/toxicidade , Animais , Clostridium botulinum/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Substâncias Protetoras/administração & dosagem , Sorogrupo
5.
Viruses ; 14(2)2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35215965

RESUMO

Mycoplasma mycoides subsp. mycoides (Mmm) is the causative agent of contagious bovine pleuropneumonia (CBPP). Lumpy skin disease (LSD) is a viral disease of cattle caused by lumpy skin disease virus (LSDV). LSD and CBPP are both transboundary diseases spreading in the same areas of Africa and Asia. A combination vaccine to control CBPP and LSD offers significant value to small-scale livestock keepers as a single administration. Access to a bivalent vaccine may improve vaccination rates for both pathogens. In the present study, we evaluated the LSDV/CBPP live combined vaccine by testing the generation of virus neutralizing antibodies, immunogenicity, and safety on target species. In-vitro assessment of the Mycoplasma effect on LSDV growth in cell culture was evaluated by infectious virus titration and qPCR during 3 serial passages, whereas in-vivo interference was assessed through the antibody response to vaccination. This combined Mmm/LSDV vaccine could be used to protect cattle against both diseases with a single vaccination in the endemic countries. There were no adverse reactions detected in this study and inoculated cattle produced high levels of specific antibodies starting from day 7 post-vaccination, suggesting that this combination vaccine is both safe and effective.


Assuntos
Vacinas Bacterianas/imunologia , Doença Nodular Cutânea/prevenção & controle , Vírus da Doença Nodular Cutânea/imunologia , Mycoplasma/imunologia , Pleuropneumonia Contagiosa/prevenção & controle , Animais , Vacinas Bacterianas/administração & dosagem , Bovinos , Doença Nodular Cutânea/imunologia , Pleuropneumonia Contagiosa/imunologia , Vacinação/veterinária , Vacinas Atenuadas
6.
Cell Rep ; 38(1): 110184, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986349

RESUMO

MV130 is an inactivated polybacterial mucosal vaccine that confers protection to patients against recurrent respiratory infections, including those of viral etiology. However, its mechanism of action remains poorly understood. Here, we find that intranasal prophylaxis with MV130 modulates the lung immune landscape and provides long-term heterologous protection against viral respiratory infections in mice. Intranasal administration of MV130 provides protection against systemic candidiasis in wild-type and Rag1-deficient mice lacking functional lymphocytes, indicative of innate immune-mediated protection. Moreover, pharmacological inhibition of trained immunity with metformin abrogates the protection conferred by MV130 against influenza A virus respiratory infection. MV130 induces reprogramming of both mouse bone marrow progenitor cells and in vitro human monocytes, promoting an enhanced cytokine production that relies on a metabolic shift. Our results unveil that the mucosal administration of a fully inactivated bacterial vaccine provides protection against viral infections by a mechanism associated with the induction of trained immunity.


Assuntos
Vacinas Bacterianas/imunologia , Imunidade nas Mucosas/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Mucosa Respiratória/imunologia , Infecções Respiratórias/prevenção & controle , Administração Intranasal , Animais , Anticorpos Antivirais/imunologia , Bactérias/imunologia , Vacinas Bacterianas/administração & dosagem , Candidíase/prevenção & controle , Linhagem Celular , Chlorocebus aethiops , Citocinas/biossíntese , Humanos , Vírus da Influenza A/imunologia , Células L , Pulmão/imunologia , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
7.
J Clin Pharm Ther ; 47(2): 139-145, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34328230

RESUMO

WHAT IS KNOWN AND OBJECTIVE: Live-attenuated bacterial veterinary vaccines can constitute an infection risk for individuals with any defect in their phagocytic function, including chronic granulomatous disease, leukocyte adhesion deficiency, myeloperoxidase deficiency, as well as Chediak-Higashi syndrome, from accidental acquisition of licenced attenuated live bacterial vaccine, at vaccination or from their vaccinated pet. Ownership of small companion animals, including cats and dogs, is popular within the cystic fibrosis (CF) community. These animals require vaccines as part of their routine care, which may involve live viral and bacterial vaccines, with potential for infection in the CF owner. This report examines the scope of current canine and feline vaccines, with particular emphasis on veterinary vaccination strategies against the Gram-negative pathogen, Bordetella bronchiseptica and describes new vaccine innovations offering protection to both pet and CF owner. COMMENT: The Gram-negative bacterium, Bordetella bronchoseptica, may cause respiratory disease in small companion animals, as well as in certain human vulnerable groups, including those with CF. Live licenced veterinary bacterial vaccines for Bordetella bronchiseptica (Kennel Cough) are available for cats and dogs, which are an infection concern for humans with CF who may come into contact with vaccinated animals. Live licenced veterinary bacterial vaccines for Bordetella bronchiseptica (Kennel Cough) are available for intranasal administration to cats and dogs. These vaccines require a withdrawal period of vaccinated animal from vulnerable owner, ranging from 35 days - 11 weeks. Recently, a new dead IM vaccine is now available not requiring exclusion of the vaccinated pet from CF owner. WHAT IS NEW & CONCLUSION: CF pharmacists, hospital pharmacists and community pharmacists are important custodians of vaccine-related advice to people with CF, who are frequently consulted for such advice. Pharmacists should be aware of the recent innovations in veterinary medicines, so that they can give appropriate advice to people with CF when asked. Immunocompromised patients, that is those with CF or those with any defect in their phagocytic function (chronic granulomatous disease, leukocyte adhesion deficiency, myeloperoxidase deficiency, Chediak-Higashi syndrome) should avoid exposure to live veterinary bacterial vaccines and seek animal vaccination utilising non-live vaccines. Most importantly, this manuscript highlights the development of a new veterinary vaccine for dogs, which we want to make the CF healthcare community aware of, which is an acellular dead vaccine, so that those patients with dogs needing annual vaccination can select this vaccine pathway, thereby minimising risk of infection from the vaccine strains and avoiding the social exclusion between CF patient and their pet. CF patients should understand the potential infection implications of live-attenuated viral and bacterial strains as vaccines, whether these are small companion animals, exotic animals or large farm animals. Patients should make their veterinarian aware of their CF status, so that a safe and efficacious vaccine strategy is used, both mitigating the potential infection risks from live vaccine components with the CF patient, but simultaneously offering maximum immunological protection to the animal.


Assuntos
Vacinas Bacterianas/administração & dosagem , Infecções por Bordetella/prevenção & controle , Doenças do Gato/prevenção & controle , Fibrose Cística/epidemiologia , Doenças do Cão/prevenção & controle , Zoonoses/prevenção & controle , Animais , Vacinas Bacterianas/imunologia , Bordetella bronchiseptica , Doenças do Gato/microbiologia , Gatos , Doenças do Cão/microbiologia , Cães , Humanos , Animais de Estimação , Medicina Veterinária
8.
Front Immunol ; 12: 790463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925371

RESUMO

The requirement for vaccine-induced tissue-resident immunity for protection against one or repeated infections with Chlamydia trachomatis (C.t.) is still not fully resolved. In this study, our aim was to investigate to which degree tissue-resident Th1/Th17 T cells in the genital tract (GT) could add to the protection mediated by circulating immunity. Out of several mucosal vaccine strategies, a strategy termed SIM (for simultaneous intrauterine and parenteral immunization with CAF01 adjuvanted CTH522), was superior in generating genital tract tissue-resident Th1/Th17 T cell immunity. This led to a faster and stronger local CD4 T cell response post infection, consisting of multifunctional IFNγ/TNFα-producing Th1 T cells and IFNγ/TNFα/IL-17-producing Th17 T cells, and a faster recruitment of innate immune cells. Post infection, SIM animals showed an additional significant reduction in bacterial levels compared to mice having received only a parenteral vaccine. Nevertheless, the parenteral strategy reduced bacterial levels by 75%, and interestingly, post infection, these mice generated their own vaccine-derived genital tract tissue-resident memory Th1/Th17 T cells, which upon a subsequent infection showed as fast an activation in the genital tract, as observed in SIM mice. Furthermore, in contrast to after the first infection, both groups of mice now showed a similar infection-induced boost in local vaginal IgA and IgG titers. Thus, vaccine-induced resident immunity, generated pre-infection, led to an advantage in the response against the first infection, but not the second infection, suggesting that a parenteral vaccine strategy is a suitable vaccine strategy against infections with Chlamydia trachomatis.


Assuntos
Vacinas Bacterianas/administração & dosagem , Infecções por Chlamydia/prevenção & controle , Chlamydia trachomatis/imunologia , Imunidade nas Mucosas , Administração Intravaginal , Animais , Anticorpos Antibacterianos , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Infecções por Chlamydia/diagnóstico , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/isolamento & purificação , Modelos Animais de Doenças , Feminino , Humanos , Imunogenicidade da Vacina , Injeções Subcutâneas , Camundongos , Células Th1/imunologia , Células Th17/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vagina/imunologia , Vagina/microbiologia
9.
Front Immunol ; 12: 767359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966388

RESUMO

Melioidosis is a potentially fatal bacterial disease caused by Burkholderia pseudomallei and is estimated to cause 89,000 deaths per year in endemic areas of Southeast Asia and Northern Australia. People with diabetes mellitus are most at risk of melioidosis, with a 12-fold increased susceptibility for severe disease. Interferon gamma (IFN-γ) responses from CD4 and CD8 T cells, but also from natural killer (NK) and natural killer T (NKT) cells, are necessary to eliminate the pathogen. We previously reported that immunization with B. pseudomallei OmpW (BpOmpW antigen) protected mice from lethal B. pseudomallei challenge for up to 81 days. Elucidating the immune correlates of protection of the protective BpOmpW vaccine is an essential step prior to clinical trials. Thus, we immunized either non-insulin-resistant C57BL/6J mice or an insulin-resistant C57BL/6J mouse model of type 2 diabetes (T2D) with a single dose of BpOmpW. BpOmpW induced strong antibody responses, stimulated effector CD4+ and CD8+ T cells and CD4+ CD25+ Foxp3+ regulatory T cells, and produced higher IFN-γ responses in CD4+, CD8+, NK, and NKT cells in non-insulin-resistant mice. The T-cell responses of insulin-resistant mice to BpOmpW were comparable to those of non-insulin-resistant mice. In addition, as a precursor to its evaluation in human studies, humanized HLA-DR and HLA-DQ (human leukocyte antigen DR and DQ isotypes, respectively) transgenic mice elicited IFN-γ recall responses in an enzyme-linked immune absorbent spot (ELISpot)-based study. Moreover, human donor peripheral blood mononuclear cells (PBMCs) exposed to BpOmpW for 7 days showed T-cell proliferation. Finally, plasma from melioidosis survivors with diabetes recognized our BpOmpW vaccine antigen. Overall, the range of approaches used strongly indicated that BpOmpW elicits the necessary immune responses to combat melioidosis and bring this vaccine closer to clinical trials.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Burkholderia pseudomallei/imunologia , Melioidose/imunologia , Linfócitos T/imunologia , Animais , Vacinas Bacterianas/administração & dosagem , Burkholderia pseudomallei/metabolismo , Burkholderia pseudomallei/fisiologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/microbiologia , Células Cultivadas , Diabetes Mellitus Tipo 2/imunologia , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/microbiologia , Masculino , Melioidose/microbiologia , Melioidose/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linfócitos T/metabolismo , Linfócitos T/microbiologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/microbiologia
10.
Front Immunol ; 12: 752168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819933

RESUMO

Modification of surface antigens and differential expression of virulence factors are frequent strategies pathogens adopt to escape the host immune system. These escape mechanisms make pathogens a "moving target" for our immune system and represent a challenge for the development of vaccines, which require more than one antigen to be efficacious. Therefore, the availability of strategies, which simplify vaccine design, is highly desirable. Bacterial Outer Membrane Vesicles (OMVs) are a promising vaccine platform for their built-in adjuvanticity, ease of purification and flexibility to be engineered with foreign proteins. However, data on if and how OMVs can be engineered with multiple antigens is limited. In this work, we report a multi-antigen expression strategy based on the co-expression of two chimeras, each constituted by head-to-tail fusions of immunogenic proteins, in the same OMV-producing strain. We tested the strategy to develop a vaccine against Staphylococcus aureus, a Gram-positive human pathogen responsible for a large number of community and hospital-acquired diseases. Here we describe an OMV-based vaccine in which four S. aureus virulent factors, ClfAY338A, LukE, SpAKKAA and HlaH35L have been co-expressed in the same OMVs (CLSH-OMVsΔ60). The vaccine elicited antigen-specific antibodies with functional activity, as judged by their capacity to promote opsonophagocytosis and to inhibit Hla-mediated hemolysis, LukED-mediated leukocyte killing, and ClfA-mediated S. aureus binding to fibrinogen. Mice vaccinated with CLSH-OMVsΔ60 were robustly protected from S. aureus challenge in the skin, sepsis and kidney abscess models. This study not only describes a generalized approach to develop easy-to-produce and inexpensive multi-component vaccines, but also proposes a new tetravalent vaccine candidate ready to move to development.


Assuntos
Antígenos de Bactérias/imunologia , Membrana Externa Bacteriana , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/administração & dosagem , Staphylococcus aureus/imunologia , Vacinas Combinadas/administração & dosagem , Fatores de Virulência/imunologia , Animais , Anticorpos Antibacterianos/sangue , Feminino , Células HL-60 , Humanos , Camundongos , Infecções Estafilocócicas/prevenção & controle
11.
Sci Rep ; 11(1): 22377, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789792

RESUMO

Mycoplasma (M.) hyopneumoniae is the main pathogen of porcine enzootic pneumonia (PEP). Its controlling is challenging, and requires alternative strategies. This study aimed to develop an oral vaccine against M. hyopneumoniae using a nanostructured mesoporous silica (SBA-15) as an adjuvant, and compare its effect with an intramuscular (IM) commercial vaccine (CV). Fifty 24 day-old M. hyopneumoniae-free piglets composed five equal groups for different immunization protocols, consisting of a CV and/or oral immunization (OI). Control piglets did not receive any form of immunization. All piglets were challenged with M. hyopneumoniae strain 232 on D49 by tracheal route. IgA antibody response in the respiratory tract, bacterial shedding and serum IgG were evaluated. The piglets were euthanized on 28 (D77) and 56 (D105) days post-infection. Lung lesions were macroscopically evaluated; lung fragments and bronchoalveolar fluid (BALF) were collected for estimation of bacterial loads by qPCR and/or histopathology examination. All immunization protocols induced reduction on Mycoplasma-like macroscopic lung lesions. IgA Ab responses anti-M. hyopneumoniae, the expression of IL-4 cytokine and a lower expression of IL-8 were induced by CV and OI vaccines, while IgG was induced only by CV. Oral immunization using silica as a carrier-adjuvant can be viable in controlling M. hyopneumoniae infection.


Assuntos
Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Mycoplasma hyopneumoniae/imunologia , Pneumonia Suína Micoplasmática/prevenção & controle , Adjuvantes Imunológicos , Administração Oral , Animais , Biópsia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imuno-Histoquímica , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Mycoplasma hyopneumoniae/classificação , Mycoplasma hyopneumoniae/genética , Pneumonia Suína Micoplasmática/microbiologia , Pneumonia Suína Micoplasmática/patologia , Reação em Cadeia da Polimerase em Tempo Real , Dióxido de Silício , Suínos , Resultado do Tratamento , Vacinação/métodos
12.
Vet Res ; 52(1): 133, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34666827

RESUMO

Streptococcus suis is an important swine pathogen responsible for economic losses to the swine industry worldwide. There is no effective commercial vaccine against S. suis. The use of autogenous ("bacterin") vaccines to control S. suis outbreaks is a frequent preventive measure in the field, although scientific data on immunogenicity and reduction in mortality and morbidity are scarce. The goal of our study is to experimentally evaluate the immunogenicity and protective efficacy against homologous challenge in weaned piglets of a S. suis serotype 2 bacterin-based vaccine formulated with six different commercial adjuvants (Alhydrogel®, Emulsigen®-D, Quil-A®, Montanide™ ISA 206 VG, Montanide™ ISA 61 VG, and Montanide™ ISA 201 VG). The vaccine formulated with Montanide™ ISA 61 VG induced a significant increase in anti-S. suis antibodies, including both IgG1 and IgG2 subclasses, protected against mortality and significantly reduced morbidity and severity of clinical signs. Vaccines formulated with Montanide ISA 206 VG or Montanide ISA 201 VG also induced a significant increase in anti-S. suis antibodies and showed partial protection and reduction of clinical signs severity. Vaccines formulated with Alhydrogel®, Emulsigen®-D, or Quil-A® induced a low and IgG1-shifted antibody response and failed to protect vaccinated piglets against a homologous challenge. In conclusion, the type of adjuvant used in the vaccine formulation significantly influenced the immune response and efficacy of the vaccine against a homologous challenge.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vacinas Bacterianas/administração & dosagem , Infecções Estreptocócicas/veterinária , Streptococcus suis/imunologia , Doenças dos Suínos/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Vacinas Bacterianas/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Sus scrofa , Suínos , Doenças dos Suínos/microbiologia , Desmame
13.
Front Immunol ; 12: 738955, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603321

RESUMO

There is increasing evidence that lung-resident memory T and B cells play a critical role in protecting against respiratory reinfection. With a unique transcriptional and phenotypic profile, resident memory lymphocytes are maintained in a quiescent state, constantly surveying the lung for microbial intruders. Upon reactivation with cognate antigen, these cells provide rapid effector function to enhance immunity and prevent infection. Immunization strategies designed to induce their formation, alongside novel techniques enabling their detection, have the potential to accelerate and transform vaccine development. Despite most data originating from murine studies, this review will discuss recent insights into the generation, maintenance and characterisation of pulmonary resident memory lymphocytes in the context of respiratory infection and vaccination using recent findings from human and non-human primate studies.


Assuntos
Infecções Bacterianas/prevenção & controle , Memória Imunológica , Pulmão/imunologia , Células B de Memória/imunologia , Células T de Memória/imunologia , Infecções Respiratórias/imunologia , Viroses/prevenção & controle , Animais , Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Interações Hospedeiro-Patógeno , Humanos , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/virologia , Células B de Memória/metabolismo , Células B de Memória/microbiologia , Células B de Memória/virologia , Células T de Memória/metabolismo , Células T de Memória/microbiologia , Células T de Memória/virologia , Fenótipo , Infecções Respiratórias/microbiologia , Infecções Respiratórias/prevenção & controle , Infecções Respiratórias/virologia , Vacinação , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Viroses/imunologia , Viroses/metabolismo , Viroses/microbiologia
15.
Iran J Allergy Asthma Immunol ; 20(5): 537-549, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34664813

RESUMO

Nosocomial infections caused by Acinetobacter baumannii (A. baumannii) nosocomial infections caused by Acinetobacter baumannii (A. baumannii) are considered as a global serious problem in hospitalized patients because of emerging antibiotic resistance. Immunotherapy approaches are promising to prevent such infections. In our previous study, five antigenic epitopes of outer membrane protein A (OmpA), as the most dangerous virulence molecule in A. baumanii, were predicted in silico. In this study, the investigators evaluated some immunological aspects of the peptides. Five peptides were separately injected into C5BL/6 mice; then the cytokine production (interleukin-4 and interferon-gamma) of splenocytes and opsonophagocytic activity of immunized serum were assessed. To identify the protective function of the peptides, animal models of sepsis and pneumonia infections were actively and passively immunized with selected peptides and pooled sera of immunized mice, respectively. Then, survival rates of them were compared with the non-infected controls. Based on the results, activated spleen cells in P127 peptide-immunized mice exhibited an increase level of IFN-γ compared with the other experimental groups, but not about the IL-4 concentration. The results of opsonophagocytic assay revealed an appropriate killing activity of produced antibodies against A. baumannii in a dose-dependent manner. Further, the survival rates of the mice under passive immunization with the immunized sera or active immunization with P127 peptide were significantly more than those in the control group. Moreover, the survival rate of the P127 peptide immunized group was considerably higher than that among the other peptide-immunized group. In conclusion, findings indicated that peptides derived from outer membrane protein-A can be used as a promising tool for designing the epitope-based vaccines against infections caused by A. baumannii.


Assuntos
Infecções por Acinetobacter/prevenção & controle , Acinetobacter baumannii/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Epitopos/imunologia , Pneumonia Bacteriana/prevenção & controle , Sepse/prevenção & controle , Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/mortalidade , Animais , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/administração & dosagem , Citocinas/metabolismo , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/imunologia , Imunização , Camundongos , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/mortalidade , Prognóstico , Sepse/imunologia , Sepse/mortalidade , Resultado do Tratamento
16.
Anaerobe ; 72: 102465, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34662696

RESUMO

Herd vaccination is an important preventive measure against enterotoxemia in ruminants. Vaccination in goats should be performed every four months, and recent studies have shown that immunity in cattle lasts for less than one year. One of the mechanisms for increasing the duration of the immune response is to use purified toxoids as immunogens. The aim of the present study was to evaluate the humoral response in cattle and goats after vaccination with purified and semi-purified Clostridium perfringens type D epsilon toxoid. The following three different vaccines were used: vaccine 1 (V1), a semi-purified toxoid adsorbed to aluminum hydroxide; vaccine 2 (V2), a purified toxoid adsorbed to aluminum hydroxide; and vaccine (V3), a purified toxoid adsorbed on chitosan microparticles. Groups of cattle (n = 6-7) and goats (n = 6-7) were vaccinated on days 0 and 30, and serum samples for antitoxin titration were collected every 30 days for one-year post-vaccination. Goats were revaccinated on day 360, and their serum was evaluated on days 367 and 374. The antibody peaks ranged between 6.90 and 11.47 IU/mL in cattle and from 1.11 to 4.40 IU/mL in goats. In cattle administered with the V1 and V2 vaccines, we observed that the antibody titers were maintained above 0.2 IU/mL until the end of the experiment. In goats, V2 elicited long-lasting antibodies, and all animals maintained the protective titers for 210 days after the first dose. In conclusion, the purified toxoid vaccine with aluminum hydroxide adjuvant was able to induce strong and long-lasting humoral responses in both species and could be an alternative for improving the immunization schedule against enterotoxemia in goats and cattle.


Assuntos
Toxinas Bacterianas/imunologia , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/microbiologia , Infecções por Clostridium/veterinária , Clostridium perfringens/imunologia , Doenças das Cabras/microbiologia , Doenças das Cabras/prevenção & controle , Toxoides/administração & dosagem , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Toxinas Bacterianas/administração & dosagem , Toxinas Bacterianas/química , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Bovinos , Clostridium perfringens/classificação , Enterotoxemia/prevenção & controle , Cabras , Imunidade Humoral , Imunização , Coelhos
17.
Vet Immunol Immunopathol ; 240: 110318, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34479105

RESUMO

The present investigation describes a formulation of a live attenuated Salmonella Gallinarium (SG) vaccine candidate against H9N2 influenza and SG infections in chickens. The formulation consists of an equal ratio of three strains, JOL2158, JOL2113, and JOL2074, which deliver hemagglutinin; HA1, HA2, and matrix protein 2 (M2e):: CD154 fusion (M2eCD154) antigens designed for broad protection against the field-matched H9N2 serotypes. The vaccine was completely safe at the average inoculation doses of 108 and 109 CFU/bird/0.2 mL in phosphate-buffered saline (PBS) used in the study. Bird immunization as a single oral inoculation could significantly engage humoral IgG, mucosal IgA, and cell-mediated immune responses against each immunized antigen, compared to the PBS control group (P < 0.05). The immunological correlates were comparable with the level of protection derived against the H9N2 and SG challenge, which resulted in significant protection against the H9N2 but only partial protection against the SG challenge as we compared against the PBS control group. The level of protection against H9N2 was investigated by determining the viral copy number and histopathological assessment of lung tissues. The results indicated a significant reduction in viral activity and recovery of lung inflammation towards the 14th-day post-challenge in a dose-dependent manner. Upon SG challenge, birds in the PBS control group experienced 100 % mortality, while 40 % and 70 % protection was observed in the SG-immunized groups for each respective dose of inoculation. The present SG-mediated immunization strategy proposes a rapid and reliable vaccine development process that can be effectively used against influenza strains such as H9N2 and holds the potential to minimize fowl typhoid caused by SG strains, mitigating two economically important diseases in the poultry industry.


Assuntos
Vacinas Bacterianas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Influenza Aviária/prevenção & controle , Salmonelose Animal/prevenção & controle , Vacinas Virais , Administração Oral , Animais , Vacinas Bacterianas/administração & dosagem , Galinhas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Imunização/veterinária , Vírus da Influenza A Subtipo H9N2 , Salmonella , Desenvolvimento de Vacinas , Vacinas Virais/administração & dosagem
18.
Elife ; 102021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34544549

RESUMO

Vaccination strategies for rapid protection against multidrug-resistant bacterial infection are very important, especially for hospitalized patients who have high risk of exposure to these bacteria. However, few such vaccination strategies exist due to a shortage of knowledge supporting their rapid effect. Here, we demonstrated that a single intranasal immunization of inactivated whole cell of Acinetobacter baumannii elicits rapid protection against broad A. baumannii-infected pneumonia via training of innate immune response in Rag1-/- mice. Immunization-trained alveolar macrophages (AMs) showed enhanced TNF-α production upon restimulation. Adoptive transfer of immunization-trained AMs into naive mice mediated rapid protection against infection. Elevated TLR4 expression on vaccination-trained AMs contributed to rapid protection. Moreover, immunization-induced rapid protection was also seen in Pseudomonas aeruginosa and Klebsiella pneumoniae pneumonia models, but not in Staphylococcus aureus and Streptococcus pneumoniae model. Our data reveal that a single intranasal immunization induces rapid and efficient protection against certain Gram-negative bacterial pneumonia via training AMs response, which highlights the importance and the possibility of harnessing trained immunity of AMs to design rapid-effecting vaccine.


Assuntos
Infecções por Acinetobacter/prevenção & controle , Acinetobacter baumannii/imunologia , Vacinas Bacterianas/administração & dosagem , Infecções por Klebsiella/prevenção & controle , Klebsiella pneumoniae/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Pneumonia Bacteriana/prevenção & controle , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/imunologia , Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/microbiologia , Administração Intranasal , Transferência Adotiva , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio/genética , Imunidade Inata/efeitos dos fármacos , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/transplante , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Fatores de Tempo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Vacinação , Vacinas de Produtos Inativados/administração & dosagem
19.
Toxins (Basel) ; 13(9)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34564599

RESUMO

The alpha (CPA), beta (CPB) and epsilon (ETX) toxins of Clostridium perfringens are responsible for causing diseases that are difficult to eradicate and have lethal potential in production animals. Vaccination of herds is still the best control strategy. Recombinant clostridial vaccines have shown good success at inducing neutralizing antibody titers and appear to be a viable alternative to the conventional production of commercial clostridial toxoids. Research is still needed on the longevity of the humoral immune response induced by recombinant proteins in immunized animals, preferably in target species. The objective of this study was to measure the humoral immune response of cattle immunized with trivalent vaccines containing the recombinant proteins alpha (rCPA), beta (rCPB) and epsilon (rETX) of C. perfringens produced in Escherichia coli at three different concentrations (100, 200, and 400 µg) of each protein for 12 months. The recombinant vaccines containing 200 (RV2) and 400 µg (RV3) yielded statistically similar results at 56 days. They performed better throughout the study period because they induced higher neutralizing antibody titers and were detectable for up to 150 and 180 days, respectively. Regarding industrial-scale production, RV2 would be the most economical and viable formulation as it achieved results similar to RV3 at half the concentration of recombinant proteins in its formulation. However, none of the vaccines tested induced the production of detectable antibody titers on day 365 of the experiment, the time of revaccination typically recommended in vaccination protocols. Thus, reiterating the need for research in the field of vaccinology to achieve greater longevity of the humoral immune response against these clostridial toxins in animals, in addition to the need to discuss the vaccine schedules and protocols adopted in cattle production.


Assuntos
Anticorpos Neutralizantes/sangue , Toxinas Bacterianas/imunologia , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/prevenção & controle , Infecções por Clostridium/imunologia , Infecções por Clostridium/prevenção & controle , Clostridium perfringens/imunologia , Proteínas Recombinantes/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Toxinas Bacterianas/toxicidade , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Brasil , Bovinos , Doenças dos Bovinos/sangue , Doenças dos Bovinos/microbiologia , Infecções por Clostridium/veterinária , Proteínas Recombinantes/administração & dosagem
20.
Toxins (Basel) ; 13(8)2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34437437

RESUMO

In horses, Clostridium perfringens is associated with acute and fatal enterocolitis, which is caused by a beta toxin (CPB), and myonecrosis, which is caused by an alpha toxin (CPA). Although the most effective way to prevent these diseases is through vaccination, specific clostridial vaccines for horses against C. perfringens are not widely available. The aim of this study was to pioneer the immunization of horses with three different concentrations (100, 200 and 400 µg) of C. perfringens recombinant alpha (rCPA) and beta (rCPB) proteins, as well as to evaluate the humoral immune response over 360 days. Recombinant toxoids were developed and applied to 50 horses on days 0 and 30. Those vaccines attempted to stimulate the production of alpha antitoxin (anti-CPA) and beta antitoxin (anti-CPB), in addition to becoming innocuous, stable and sterile. There was a reduction in the level of neutralizing anti-CPA and anti-CPB antibodies following the 60th day; therefore, the concentrations of 200 and 400 µg capable of inducing a detectable humoral immune response were not determined until day 180. In practical terms, 200 µg is possibly the ideal concentration for use in the veterinary industry's production of vaccines against the action of C. perfringens in equine species.


Assuntos
Antígenos de Bactérias/administração & dosagem , Vacinas Bacterianas/administração & dosagem , Infecções por Clostridium/prevenção & controle , Doenças dos Cavalos/prevenção & controle , Toxoides/administração & dosagem , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/sangue , Infecções por Clostridium/veterinária , Clostridium perfringens/imunologia , Feminino , Cavalos/imunologia , Imunidade Humoral , Masculino , Proteínas Recombinantes/administração & dosagem , Toxoides/genética , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...